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INTR ODUCTION

The interaction of geomagnetically trapped electrons with the

neutral atmosphere entail s both a diffusion in local pitch angle (a)

and a loss in electron energy (E). The corresponding transport

coefficient s D00 and (dE/dt)~ can be constructed by summing the

contributions D0~~ and (dE/dt)
3 

f rom the various atmospheric

constituents (j). The subscript v on dE /dt serves only to emphasize

that the corresponding process is essentially frictional, as diatin-

guished from stochastic. The partial transport coefficients

and (dE/dt)
3 

are proportional to the local number density N. of

atmospheric constituent j but are independent [e. g., Walt, 1966]

of the local pitch angle (a). Both decrease in magnitude as the energy

( E )  of the incident electron increases.

• R adiation-belt evolution ii conventionally described (e. g.,

Haerendel, 1968] by means of a bounce-averaged Fokker-Planck

equation. Thus, it proves convenient to introduce the bounce-

averaged partial transport coefficients ~~~~ = ((B0 /B) ~~~~~ cos2a)

and ((dE /dt)
3
), where

y = (B0 B) sin a (1)

- 
is the sine of the equatorial pitch angle (a0) and B0 is the minimum

-5-
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value of B (the magnetic-field Intensity ) along the field line (L). The

boun ce average of any quantity Q is given by

(Q) (~2z /2ir )f(Q/v) sec a di, ( 2 )

where v is the speed of the electron , a is the coo r dinat e that

measures arc length along ~~ and 2w/ c22 is the full bounce period

defined by sett ing Q = (Q) = 1 in (2) . The purpose of the present

note is to deriv e an analytical relationshi p between the contributions

of a given atmosphe ric constituent (j) to D~~ and ((dE/dt)~ >, i. e. , to

derive an analyti cal relationship between ((B0 /B) N
3 

cos2or> and (N
i>.

DERIVATION

•

1

The essenti al step in the derivatio n is to observe that ( 1 )  implies

cos a = (1 — y2(B/B 0)]1’
~
2. Thu s, it follows from (2) that

2 (N./v)(B 0/B) ds  3cos a> .1(1- y2(B/B 0
)) ’ 112

while

~r (N /v ) ds
y(Ziu /fl 2 ) <N3

) = 
.1(1 - y~ (~~/~~0 )J 1~ 2 S (4)

Moreover , the ri ght member of (4) 1. equal to minus the derivative • -

of the right member of (3 )  with resp ect to y. Thus , It follows that

. 

<~
5o15

~’j 
cos2a) ~ cz2 7 f  [u/Q2(u)1 (N~) du, (5)

— — __________________ - • .- • ~~~~~~~~~~~~~~~~~~~ A
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since cos2cr ~ 0 for y = 1. This is the desired result. The practical

significance of (5) is that , given eithe r (N
3) 

or <(B 0/B)N
3 

cos 2o)

- as a function of y, one can imm ediately obtain the other by integra-

tion or differentiation (respectively).

It can be shown by Jacobian methods [Haerendel. 1968] that the

bounce-averaged phase-space density ? satisfies the Fokker-Planck

equation [cf. Walt, 1966)

a? 8 y D a? 1 a 2 / /dE\\ _
— = — —  vy 

- V v ( (—) )f  (6)
at y by Q

2 a~ V V 8E

in the absence of ra nge straggli ng (DEE = 0) and radial diffusion

(D LL 0), where V is the ratio of relativistiC ~ -as (m) to rest

mas s (m0). The present work has shown that the contributions of any

atmospheric constituent (j) to D~~, and ((dE /dt) ) in (6) are related

by virtue of (5) .

APPLICATIONS

The bounce period (Zir/ fl 2 ) in a dipolar magnetic field (
~J

is proportional, at fixed energy (E) and shell parameter (L), to

a function called T(y) which is well approximated [Davidson, 1976]

by the formula

T(y) ~ T(0) - [T(0) - T( 1))y 314

S

~ 1. 380173 — 0.639693 ~3/4
• (7)

-7-
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Earlier approxim ations of T(y) had been given by Hamlin et al.

[1961] and Lenchek et al. [1961]. Although T(y) can be generated

to arbitr ary accu racy by a numerical integration of (2) for Q

(Q) 1, the use of (7) in (5) should mak e the required integral for

<(B0 /B)N
3 

cos2a) much easier to perform in most instances.

A particularly simple case utilIzing (7) ii that of a spatially

uniform atmospheric density N
3
. This occurs in most laboratory

devices , for example. (A laboratory device that simulates the

geometry of the magnetosphere is commonly called a ‘ terrella. ” )

In situations such as this , for which (N
3
) = N . (a constant), it follow s

from (5) that

((B0 /B)N
3 

cos2Or) = (Z(y)/T (y)] N
3
, ( 8)

where

‘U.’

Z(y) = J u T(u) du
y

~ (1f2 )( l  - y2 ) T(0)

— ( 4 / l l f l I  — y1
~~

”4 )[T (0)  — T( 1)J (9)

if T(y) is approximated by (7). The present approximation y ields

Z(0) ~ 0.45747 1, which agrees well with the exact result [Schul z, 1974]

that Z(0) = 16/35 (~~0.457I43). An earlier approximation of Z(y),

which yielded Z(0) ~ 0.455533, had been derived by Schul z [19741 in

a different context. It follows from (6) that the Fokker-Planck

-8-
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I
equation for scattering by a uniform atmosphere is of the form

a? 
= 

D~0 L y Z(y ) - ~~~~~~~~~~~~~~~~~~~ V 2V/ (_~\f l,(10)
yT(y)by 8y V v 8E \\dt /~,/ j

where Daa and ((dE/dt)~) are independent of y and of L.

In the real magnetosphere , of cou rse , one doe s not enc ounter

anything like a unifo rm atmosphere. However , various investigato r s

have numerically implemented the bounce averages indicated in (3)

and (4). The dashed and solid curves [Wal t , 1966] shown in Figu r e

1 represent (respectively)  the quan tities (2 V 2 v3 /c 3x2 ) Dyy and

(-v/rn 0c3) ((dE/dt)~), where x is the cosine of the equatorial pitch

angle (hence x2 
+ y 2 

= 1) and c is the speed of light. These par-

ticular forms serve to facto r out the energy dependenc e of the transport

coefficients, except f o r  some slowl y varying logarithm s which are

• evaluated at E — 1 MeV.

Except for the fact that the neutral atmosphere has several

constituents (j), one should expec t to find

(v/m0c3) ( ( d E /dt)~ >

• 
A d (  r z V 2v3

= ______ — ~~ (1 — y2 ) T(y) 1 2 3 D ~ ( 11)
yT(y) dy ~ L x c  ~~~ J

where A is a dimensionless constant that depend s in detail upon the

ratio between the inelastic and elastic cross sections of atmospheric

molecules or atoms for incident electrons. The “data” points (filled

9 
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Figure 1. Magnitudes of (-v/m0c3) ((dE/dt)~ > ( solid curve ) and

(2 v
2v3/c3x2) Dyy (dashed curve) for inner-zone electrons subjected

solely to atmospheric collisions [Wal t, 19661, together with “data” f
point s derived from dashed cu rve ( and nominally “predicting” the

solid curve ) by means of (11).
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circles) in Figure 1 serve as an Illustration of this Idea. The square-

bracketed factor in (11 )  has been differentiated numerically at L = 1. 185

and treated as a constant (for x < 0 . 8 6 )  at L 1.9 for this purpose.

The resulting “data ” points (normalized by evaluating A to force

agreement at x = 0) follow the solid curve s rather well. One would

not have expected perfec t agreement, since the de nsities (N
3
) of the

various atmospheric constituents (j) have different altitude profiles

and contribute to D~~, and <( cIE/dt )~,) with different weights (essenti-

ally as Z~ to ~~~ and as Z
3 

to ((dE/dt) ), where Z
3 

is the nuclear

char ge). Thus , the transition from hydrogen dominance to oxygen

dominance along fi eld line s on the L = 1.9 drift shell may help to

account for the departure of the “data” points from the solid curve

at large x.

Bounce-averaged atmospheric densities <N 3 > have been compiled

by several investigator s [e.g. , Cornwall et al., 1965] in the course of

studies on radiation-belt protons (for which atmospheric pitch-angle

diffusion is an unimportant process). The present result, as summari-

zed by (5), enables one to extract the weighted bounce average relevant

to electron pitch-angle diffusion directly from such compilations of

(N
i
). For example, if one has found that (N

3
)=  ~~~~~~~~~~ for some

range of L values, then it follows from (5) and (7) that

((B0/B) N
3 

cos 2cw)

~~~~~ N~~ f i  - y2
~~ - ~2.75~ n 1

= 7  I — — I (12)
£ST(y) 

~ 
( 2 - n )  0. 53939 ( 11 - 4n)J
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Terms corresp onding to n = 2 and n = 11/4, if present In (12),

reduce to logarithmic form upon expansion. Applications such as

this may enable the present discovery ( which seems ju st mildly

curious at first sight) to be useful In practice as well as in theory.

a

A

I
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(Cr , reentry physics , chemical kinetic. , structura l mecha nic. , fli ght dynam ic..
atmospheric pollution, and high-power gas lasers.
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sensitive materials and sensor. , high precision laser rang ing, and the appli-
cation of physics and chemistry to problems of law enforcement and biomedicine.

Electronics Research Labor atory : Electromagnetic theory, devices , and
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lasers , and electro -opt ics ; communication sciences , applie d electronics , semi -
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and ceramic , in reentry; spacecraft materia ls and electroni c component. in
nuclear weapons environment; application of fracture mechanics to stress cor-
rosion and fatigue-induced fractures in structural metals .

Space Sciences Laboratory: Atmospheric and lono.ph erlc physics , radia-
tion from the atmosp here, density and composit ion of the ahnosp h re. aurorae
and airg iow; magn etos pher ic physics, cosmic rays , generation and prop agation
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